Concept of Operations for Connected Vehicle Road-Weather Applications

Christopher J. Hill, Ph.D., PMP

Consultant

Booz Allen Hamilton

Purpose

- Introduce the scope of the ConOps
- Discuss potential Connected Vehicle Road-Weather applications
- Obtain feedback on applications needs and concepts

Justification for Change

- Impacts of road-weather on safety, mobility, and productivity are well understood
- Road-weather environment is unique; and requires both weather and road weather products (e.g., pavement forecasting) presented in a transportation context

Current Situation

- FHWA Road Weather Management Program addressing the problem through targeted and coordinated R&D
- State and Local transportation agencies investing in implementation of road weather management technologies
- Academic and research community conducting advanced research
- Private sector offering commercial products and services

Need for Further Work

- Need to significantly reduce the weather related crashes, injuries and fatalities
- Road users need high resolution weather and road condition information
- Road managers need ability to predict and manage conditions at a more granular level
- Need to understand driver behavior under a variety of weather and road conditions
- Need to understand how infrastructure-based systems should be optimized in response to changing weather conditions

Opportunities from Connected Vehicles

- Connected vehicles can dramatically change the road weather environment:
 - Provide a continuous picture of what's happening on the roadways
 - Dramatically enhance existing road weather management systems
 - Create transformative new applications that leverage connected vehicle data
 - Bring additional capabilities to other connected vehicle safety, mobility, and environmental applications

Taxonomy of Application Areas

Category	Examples
Road Weather Alerts & Warnings	Motorist Advisories & WarningsEnableATIS
State & Local Agency-Based Applications	 Enhanced MDSS Info for Maintenance Mgmt Systems Weather-Responsive Traffic Mgmt INFLO Signal/Stop Sign Violation Warnings Curve Speed & Rollover Warnings
Freight-Based Applications	 Information for freight shippers
EMS/First Responder Applications	 Info & Routing support for emergency responders

Connected Vehicle Road-Weather Apps

- Motorist advisories and warnings
- Enhanced maintenance decision support system
- Information for maintenance and fleet management systems
- Variable speed limits for weather-responsive traffic management (WRTM example)
- Information for freight shippers
- Information and routing support for emergency responders

Enhanced-MDSS - Background

- Decision-support tool integrates road-weather forecasts, rules of practice, and resources to recommend treatment strategies
- Effectiveness of recommendations related to quality and extent of inputs
- Connected vehicles will provide expanded data acquisition
- Enhanced-MDSS will generate improved plans for maintenance managers; in turn, better information provided to operators

Enhanced-MDSS Application

06.101.12

FIGURE 5-7

ROAD

Data Acquisition Subsystem

- Connected vehicle onboard and roadside equipment
- General public and commercial vehicles; specialty vehicles, and public fleet vehicles
- Cars and trucks provide BSM Parts 1 & 2 data; agency vehicles provide data from specialty sensors

Data Processing Subsystem

- Data sent to VDT to generate segment-based outputs for the Enhanced-MDSS
- Outputs assimilated in back-end processors for use in weather & pavement temp models
- Supplement other data in Road Weather Forecast System and Road Condition & Treatment Module

- User Interface System
 - Maintenance personnel interact with system in similar manner to existing MDSS
 - New decision support tools may be developed to use detailed segment-specific data
 - New techniques required to deliver plans and recommendations to operators

Maintenance and Fleet Management System - Background

- Viewed as stand-alone app and adjunct to **Enhanced-MDSS**
- Systems concerned with control of physical assets - vehicles, equipment, materials
- Purposes include:
 - Manage material and fuel usage and purchases
 - Allocation of staff and other resources
 - Equipment maintenance planning & scheduling
 - Budget monitoring and forecasting
 - Acquisition and procurement support

Maintenance and Fleet Management System - Background

- Connected vehicles can provide non-road weather data
 - Diagnostic information, vehicle component status, location of vehicles, types/amount of materials
- Potential to automate data inputs year-round
- Selected data can be passed to Enhanced-MDSS to refine recommended winter weather response plans and recommendations

Maintenance & Fleet Management Application

Data Acquisition Subsystem

- Connected vehicle onboard and roadside equipment
- Data collected year-round from all maintenance assets
- Diagnostic data via CANBus; other data from specialty sensors

Data Processing Subsystem

- Connected vehicle data via backhaul to remote processing system
- Outputs to Maintenance and Fleet Management System; onward transmission to E-MDSS as necessary

- User Interface Subsystem
 - Users interact with systems in similar manner to existing system
 - New decision support tools may be required for E-MDSS to use connected vehicle data

Variable Speed Limits for WRTM - Background

- One example of a road-weather WRTM strategy
- Other connected vehicle applications considering road-weather information
 - Signal and stop sign violations, speed harmonization, queue warning, curve speed warning
- VSL provide real-time info on appropriate speeds for current conditions and warn drivers of approaching road conditions

Variable Speed Limits for WRTM - Background

- Gaining attention in work zone management
 - Multiple roadside monitoring and display trailers detect speed and conditions, consider roadwork activities, and determine appropriate speed
- Connected vehicle data can enhance operations and improve work zone safety during severe weather
 - Additional road-weather info used in algorithms to refine posted speeds to reflect prevailing weather and road conditions

Variable Speed Limits for WRTM

- Data Acquisition Subsystem
 - Connected vehicle onboard and roadside equipment gather data from all vehicles
- Data Processing Subsystem two scenarios
 - Data processing at roadside using systems on portable trailers; suitable for mobile WZ or no backhaul
 - Data communicated to remote location (TOC or maintenance shed) for processing; suitable for long-term construction or broader VSL applications incorporating DMS or in-vehicle signing

- Data Processing Subsystem contd.
 - Data processed by VDT, combined with other data (traffic, weather, work zone characteristics) and used in speed limit selection algorithm
- Information Display Subsystems
 - Roadside processing: use mobile display trailers
 - Remote processing: Trailers, freeway/arterial DMS, in-vehicle signs

Motorist Advisories and Warnings - Background

- Access to travel/weather information from multiple sources, providers, and media
 - Traffic incidents and delays, work zones, severe weather events
 - 511 systems, websites, DMS, social media
 - Traditional media outlets
 - NWS Watches, Warnings, Statements, and Advisories and broadcast media outlets use NWS Doppler Radar feeds
 - private sector packaging traveler information with navigation products or as mobile applications

Motorist Advisories and Warnings - Background

- Value of information related to the breadth and quality of the data collection capabilities
- Segment-specific weather and road conditions is not well represented
- Information from connected vehicles will dramatically change this situation
 - Deteriorating road and weather conditions pushed to travelers within a few minutes.
 - With observations and forecasts and additional processing, medium-term to long-term advisories can be provided

Motorist Advisories and Warnings

Data Acquisition Subsystem

- Connected vehicle onboard and roadside equipment
- General public and commercial vehicles; specialty vehicles, and public fleet vehicles
- Cars and trucks provide BSM Parts 1 & 2 data; agency vehicles provide data from specialty sensors

Data Processing Subsystem

- Data communicated to VDT to generate segmentbased outputs that will be provided to a motorist alerts algorithm to create short time horizon alerts
- Supplement with other data and assimilate in backend processors for use in weather and pavement temperature models

- Information Generation Subsystem
 - VDT outputs to other information processing systems to produce tailored information content for end user systems
 - Decision support tools may be developed for traffic and maintenance operations
- End User Interface Subsystems
 - Outputs from motorist alerts algorithm and from other information generation subsystems will be provided in a manner that makes the information accessible through as many end user interfaces as possible

Information for Freight Carriers - Background

- Special case of motorist advisory system
- Truck drivers must consider weather and road conditions to operate vehicles safely and consider approaching weather events to plan Hours-of-Service and parking availability; multi-state information especially important
- Rerouting can present challenges
 - Weight and bridge height restrictions, geometrics, operational factors (e.g., delivery schedules)

Information for Freight Carriers - Background

- Connected vehicles can provide information on deteriorating weather and road conditions that can be pushed to truck drivers and dispatchers
 - Short-time horizon advisories and warnings
 - Medium and long-term advisories to dispatchers to support routing and scheduling decisions
 - Decision support systems could be developed by shippers or commercial providers that consider other factors and restrictions

Information for Freight Carriers

- Data Acquisition Subsystem
 - Connected vehicle onboard and roadside equipment gathers data from all vehicles
- Data Processing Subsystem
 - Data delivered to VDT to generate segment-specific short time horizon warnings that are pushed to drivers and dispatchers
 - Outputs supplemented with other data and used in various models to provide carriers or commercial providers with medium to long time horizon alerts for use in their systems

- Information Generation Subsystem
 - VDT data outputs made available to other information processing systems in shipper facilities or operated by commercial service providers
- End User Interface Subsystems
 - Information from short time horizon algorithm or from other information generation systems must be suitable for display in the truck cab environment

Information and Routing Support for Emergency Responders - Background

- Ambulance drivers, paramedics, and fire & rescue companies need short, medium, and long-term advisories
 - Help drivers operate vehicles safely during weather events
 - Support routing and dispatching decisions
 - Road or lane closures due to snow, flooding or wind-blown debris affects selection of response routes, calculation of response times, and decisions to hand-off calls to another responder

Information & Routing Support for Emergency Responders

- Data Acquisition Subsystem
 - Connected vehicle onboard and roadside equipment acquire data from all vehicle types
- Data Processing Subsystem
 - VDT generates segment-based outputs for use in weather alerts algorithm to generate short-time horizon message provided to operators and dispatchers
 - Outputs supplemented with other data and used in models to generate information for dissemination to Emergency Responder DSS

Decision Support System

- New system may reside in emergency responder facility or transportation agency
- Analyze interactions between current and forecast road and weather conditions, traffic conditions, and information from agencies (e.g., plowed routes)
- End User Interface Subsystems
 - Requires new subsystems appropriate for the emergency vehicle operator or dispatcher

Operational Policies and Constraints

- Data availability
 - **Broad Connected Vehicle Penetration**
 - Willingness to deploy specialty sensors
 - Deferred trips during severe weather
- VDT implementation
- Existing system enhancements
- Algorithm and processing system development
- Interfaces to other system
- Deployment coverage

Summary of Impacts

Operational impacts

- Need for connected vehicle infrastructure
- Implementation of new systems
- Changes to existing systems
- New data sources and data processing capabilities
- New operational procedures
- New training requirements

Organizational impacts

- New interactions between public agencies
- New interactions with private entities

Discussion of Concepts

- Have we identified the correct needs?
 Can we refine or expand the needs?
- Have we identified appropriate concept/approaches to respond to the needs?
- What are the impediments and constraints to implementation?
- What kind of benefits and costs do we know of?

Enhanced-MDSS Application

06.101.12

FIGURE 5-7

ROAD

Maintenance & Fleet Management Application

Variable Speed Limits for WRTM

Motorist Advisories and Warnings

Information for Freight Carriers

Information & Routing Support for Emergency Responders

Enhanced-MDSS

Maintenance and Fleet Management System

Variable Speed Limits for WRTM

Motorist Advisory and Warning System

Information for Freight Carriers

Information and Routing Support for Emergency Responders

